Tez Arşivi

Tez aramanızı kolaylaştıracak arama motoru. Yazar, danışman, başlık ve özetlere göre tezleri arayabilirsiniz.


Orta Doğu Teknik Üniversitesi / Fen Bilimleri Enstitüsü / Bilgisayar Mühendisliği Anabilim Dalı

2017

A hierarchical representation and decoding of fMRG data by partitioning a brain network

fMRG verilerinin beyin ağları üzerine kurulu hiyerarşik temsili ve çözümlenmesi

Bu tez, YÖK tez merkezinde bulunmaktadır. Teze erişmek için tıklayın. Eğer tez bulunamazsa, YÖK Tez Merkezi'ndeki tarama bölümünde tez numarasını arayabilirsiniz. Tez numarası: 474929

Tezi Bul
Özet:

Bu çalışmada, insan beyninin modellenmesi için, fonksiyonel Manyetik Rezonans Görüntüleme (fMRG) verileri kullanılarak oluşturulan iki seviyeli hiyerarşik bir ağ modeli öneriyoruz. İlk seviyede, fMRG verilerinin yapıtaşı olan vokseller üzerinde bir ağ oluşturuyoruz. İkinci seviyede ise, ilk seviyedeki ağ yapısını alt ağlara parçalayarak, homojen beyin bölgeleri elde ediyoruz. Süper voksel adını verdiğimiz bu bölgeleri elde etmek için BrainParcel adını verdiğimiz bir beyin bölütleme algoritması geliştirdik. Son yıllarda insan beynini çizge kuramı kullanarak modellemek önem kazandığı için, BrainParcel de bir çizge parçalama yöntemidir. Bu algoritma, Örgü Ağları Modeli kullanılarak oluşturulan bir beyin ağını parçalayarak beynin alt ağlarını bulmaktadır. Çıktı olarak elde edilen süper vokseller, anatomik beyin bölgelerine bir alternatif oluşturmaktadır ve onlardan farklı olarak doğrusal bağımlı vokselleri bir araya getirmektedir. İkinci seviyede, süper vokseller arası bir örgü ağı kurmaktayız. Böylece, fMRG verilerini ilk seviyesini vokseller arası, ikinci seviyesini ise süper vokseller arası bir çizgenin oluşturduğu iki seviyeli hiyerarşik bir yapı içerisinde göstermekteyiz. Bu hiyerarşik yapının bilişsel süreçlerisunum gücünü ölçmek amacıyla Cognitive Learner adını verdiğimiz bir topluluk öğrenme mimarisi önermekteyiz. Bu mimari, insan beyni deşifresi üzerine çalışmakta olup, bilişsel süreçleri sınıflandırmaktadır. Cognitive Learner bir nesne tanıma problemi sırasında elde edilen fMRG verileri üzerinde denenmiştir. Sonuçlar göstermektedir ki, BrainParcel Cognitive Learner ile birlikte kullanıldığında beyin çözümlemesi için sınıflandırma performansını arttırmaktadır.

Summary:

In this study, we propose a hierarchical network representation of human brain extracted from fMRI data. This representation consists of two levels. In the first level, we form a network among the voxels, smallest building block of fMRI data. In the second level, we define a set of supervoxels by partitioning the first level network into a set of subgraphs, which are assumed to represent homogeneous brain regions with respect to a predefined criteria. For this purpose, we develop a novel brain parcellation algorithm, called BrainParcel. As current literature tends to represent human brain as a graph, BrainParcel adopts this approach. The suggested algorithm partitions a brain network, called mesh network using a graph partitioning method. The supervoxels obtained at the output of BrainParcel form partitions of brain as an alternative to anatomical regions (AAL). Compared to AAL, supervoxels gather the linearly dependent voxels. As the next step, we form a mesh network among the supervoxels. Therefore, we represent fMRI data by two networks of different granularity. The first network is at voxel level, whereas the second is at supervoxel level. In order to test the representation power of this two level network, we suggest an ensemble learning architecture, called Cognitive Learner. The suggested ensemble learning method is used in brain decoding problem, where we classified the cognitive states. The results applied on an object recognition problem show that the suggested BrainParcel algorithm together with Cognitive Learner has a better representation power on brain decoding in terms of classification accuracy.