Tez Arşivi

Hakkımızda

Tez aramanızı kolaylaştıracak arama motoru. Yazar, danışman, başlık ve özete göre tezleri arayabilirsiniz.


İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü / İnşaat Mühendisliği Anabilim Dalı / Yapı Mühendisliği Bilim Dalı

Ağır sanayi yapısının AISC 360-10 ve TS-648 Yönetmeliklerine göre karşılaştırılmalı boyutlandırılması

Comperative design of a heavy industrial steel structure according to AISC 360-10 and TS-648

Teze Git (tez.yok.gov.tr)

Bu tezin tam metni bu sitede bulunmamaktadır. Teze erişmek için tıklayın. Eğer tez bulunamazsa, YÖK Tez Merkezi tarama bölümünde 363592 tez numarasıyla arayabilirsiniz.

Özet:

Çelik yapılarda mühendislik tasarımı ve paket programlar önemli bir yer tutmaktadır. Mühendislik tasarımı sırasında yönetmelikler mühendislere yol gösterici durumundadır. Mevcut yönetmelikler farklı tasarım prensiplerine dayanmakla birlikte hepsinin amacı hizmet süreci içinde insanların can güvenliğini sağlamaktır. Günümüzde yapıların boyutlandırmasında iki temel ilke vardır. Bunlar son yüzyıl süresinde kullanılan emniyet gerilmesi ilkesi, diğeri son otuz yılda yapılan olasılık teorisine dayanan yük ve dayanım ilkesidir. Yüksek lisans tezi olarak sunulan bu çalışmada, uzun doğrultuda merkezi çaprazlı çelik sistem, kısa doğrultuda çerçeve sistem olarak tanımlanmış süneklik düzeyi normal ağır sanayii yapısının, AISC 360-10(American Institute of Steel Construction) ve TS-648'e (Çelik Yapıların Hesap ve Yapım Kuralları) göre SAP2000 programının çubuk gerilme analizleri incelenmiştir İnşaat mühendislerinin amacı yapıların tasarımının yanı sıra tasarladıkları yapıların maliyetini düşürmektedir. Yapılan bu tez çalışmasında emniyet gerilmesi ilkesi ile yük ve dayanım ilkesi karşılaştırılarak optimum sonuca hangi yönetmeliğin yakın olduğunu gösterilmektedir. Taşıyıcı sistem modeli boyutlandırmasında düşey ve yatay değerleri sabit tutulup AISC 360-10 kapsamında bulunan LRFD ( Load and Resistance Factor) , ASD( Allowable Stress Design) ve TS-648 yönetmeliklerine öngördüğü kombinasyonlar kullanılarak analizler yapılmıştır. Düşey yük ve rüzgar yükleri için TS-498 yönetmeliği kullanılmıştır. Deprem yükünün belirlenmesinde ASCE 7-10 ve DBYBHY-2007 yönetmelikleri kullanılmıştır.

Summary:

Engineering design and programmes are vital process in steel structures. In this duration of engineering desing many codes are guiding to engineers. Although existing design codes based on different design principles, all the design code's aim is to ensure life safety . There are two basic principles in design of structure. One of them is allowable stress design and the other is load and resistance factor that is based on probability theory. In this study, which is presented as a M. Sc. thesis, in the long direction concentrically braced frame, in the short direction moment frame is defined as nominal ductility level heavy industry structure. AISC 360-10 and TS-648 design codes are used to examine SAP 2000 stress analysis. One of the aim of civil engineers is not only design of buildings but also reducing the cost of the buildings. In this thesis allowable stress design and load and resistance factor design compared to which is closed to optimal results. In the design of structural model, vertical and horizontal loads kept constant and LRFD (load and resistance factor), ASD (allowable stress design) and TS-648 code's combinations are used to analyse structure. TS-498 code is used for vertical load and wind load. Determination of seismic loads ASCE 7-10 and DBYBHY-2007 codes are used. The internal forces of the frame elements located in the SAP2000 program, AISC360-10 (LRFD), AISC360-10 (ASD) and TS-648 according to the regulations of stress in the frame elements are compared. When we examine capacity ratio of frames, LRFD and ASD design criteria in sizing results are too close but according to TS-648 design criteria , we need to change frame section. This case will cause move away from economy and increase the cost of building. Wind loads in the load analysis was calculated according to the principles of TS-648. Earthquake loads carried by the AISC 341-10 code and DBYBHY 2007 code and the results are quite close. Because our infrastructure and existing regulations for snow accumulation of clutter in our profit calculation methods related to the lack of a clear account. Snow accumulation UBC-97 was performed according to regulations. We used DIN120 regulation to design crane girders..The reason that to use this regulation, especially occurring at constant load is to consider the effects of fatigue. As a result of these studies , some shortcoming appeared in T-648 code.If we summarize briefly; Though main loads and extra loads for resistance strength identified, the combinations that should be used in sizing aren't mentioned. There are normal ductility and high ductility definitions in earthquake regulations so as to be used in earthquake analysis of steel contructions.This classification is made by the energy would be swallowed in earthquake.This classification effects reduction factor of earthquake load and earthquake effect decrease at that rate.Besides ductility level, cross-sectional dimentions are defined and slenderness upper limits are identified.When viewed from this aspect , existing TS-648 seems inadequated.Slenderness upper limits exist for only build-up section based on web and flange section dimentions. In TS-648 article 2.4.2.4, displacement information given but this information provide nowadays needs.When service quality taken into consideration, it's observed that constructional users aren't disturbed by vibration or ascillation and there hasn't been deformation ,vibrations or ascillation in the level to damage components of architectural details Defined from the point of local buckling of differences between compact and non-compact are important in plate girders.In this elements that not carry seismic load AISC 360-10 code permit sizing compact and non-compact sections.However, that difference doesn't in TS-648 code. When we examine AISC 360-10 code we observe that all kinds of section types ( I section, U section , pipe section, box section)has different capacity calculations. Even for some sections types the stresses formulas can change.When we analyse TS-648 unfortunately we can't see that difference.Its extent is rather limited considering AISC 360-10. We clearly see that; TS648 code that we currently use is behind our nowadays conditions and engineering experiences.TS-648 code which is technically insufficient; is supposed to be reviewed again as part of nowadays technology, information and construction rules.