Tez Arşivi

Hakkımızda

Tez aramanızı kolaylaştıracak arama motoru. Yazar, danışman, başlık ve özete göre tezleri arayabilirsiniz.


İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü / Matematik Mühendisliği Anabilim Dalı

Aircraft parking optimization using genetic algorithm

Genetik algoritma kullanarak uçak park yeri optimizasyonu

Teze Git (tez.yok.gov.tr)

Bu tezin tam metni bu sitede bulunmamaktadır. Teze erişmek için tıklayın. Eğer tez bulunamazsa, YÖK Tez Merkezi tarama bölümünde 496357 tez numarasıyla arayabilirsiniz.

Özet:

The growth of aviation industry created new problems. One of these problems is the GAP (Gate Assignment Problem). Increasing aircraft traffic at large airports requires the effective use of gates. Airplane parking positions have affected the operational costs as well as the ability of transit passengers and their baggage to reach the next flight. The goal of GAP is to park aircrafts at the appropriate locations on the ground to ensure that airport parking area is used in a most efficient way. In literature, first the total walking distance of transit passengers, then the distance from the parking position to the baggage area and the total distance to the next flights of transit passengers are used as the target function. In 1980s, Babic et al. [2] did some research on this problem by using integer-programming and it got investigated by many others. In the following years, statistical models were preferred instead of deterministic models. Various simulation models were proposed by Yu Cheng [3]. Bolat [4] took operational costs as a target function instead of transit passengers or baggage distance. For the first time in 1998, GA [5] was used for GAP. The calculation of this complicated problem (GAP) is shortened using GA. In 2001, multiple targeted problems have been proposed [6]. Linkage and uniform gene exchange methods were used for GAP by Paolo [7]. In this thesis, GAP is solved by GA method. Total transit passenger walking distance is used as an objective function. This method aims to minimize airline cost and maximize customer satisfaction. This will also minimize the time delay and the number of delayed planes. The GA has been developed properly for GAP without any use of GA program package, and it has been introduced in the interface of a web page 'http://genetik1.netf13.com/home'. This paper aims the optimization of planes allocation in order to minimize the operation cost, especially in hub airports. Gate assignment problem (GAP) is a process which affects hub airports scheduling if it is not handling with a great attention. Even there are similar studies, this paper's application runs on an interactive and open to public web page. In this thesis, it is emphasized that GA gets inspiration from natural selection. These type of algorithms are successful in problem-solving because they use the nature's rules of survival. A genetic algorithm is an evolutionary algorithm. So there must be appropriate parameters of the algorithm to work properly. These parameters are chosen in accordance with GAP and the size of the problem. While coding the program, a modular structure was constructed. This program can be developed easily because changes in a specific class are only effective within its class. As a result of this, changes do not affect the general working protocol. Enhanced Permutation Code is appropriate for this study because normal permutation code is insufficient for null values in representation. OX and Partially Mapped CO (PMX) are appropriate for permutation representation but OX is better for permutation with null values. xix In this application, PHP is used for the algorithm, HTML is used for GUI and MySQL4 is used for the database. As this program is a GUI, it allows other people to go to the web-site and interact. While coding the programme, a modular structure was constructed. The user can choose any parameter and start the program. However, by using their preferred parameters, they can get top 5 results, analyze and examine them. 0data_set_gate0 table is a square matrix that indicates the distance between the gates. 0data_set_plane0 table is a square matrix that indicates the number of transit passengers on a plane. Furthermore, 'open' table is for the easy use of the program with memorizing and accessing usable parameter sets. In the end, parameters and results are kept in the "stat" table. On the background, communication with the database, the start of the algorithm and parameter checks and setup is provided from PHP. This object oriented PHP system is coded by Burak Durukan and algorithm is designed by Burak Güler. The program and the code in the thesis is stored in a CD. Running parameters and results can be seen 3.1 and 3.2 sections. During the trials, when the final step is used to get a result, the outcome turns out to be random. The algorithm does not give palpable results in the final step. The algorithm should work like an artificial intelligent so stagnant step is preferable parameter for it. Using stagnant step gives a chance for algorithm to find a solution before the final step which is determined earlier but in big numbers. The stagnant step forces algorithm to stop after getting the best result. This study shows that the best stagnant step is between 1/5 and 1/9 of the final step. Another usable parameter that affects run time of the algorithm is mutation rate. Studies show that the best mutation rate for this algorithm is between 0,06 and 0,11. Due to direct changes in solutions, higher mutation rate is unnecessary and negative for the result. Another parameter behind the best result is elitism. There have been similar studies about GAP before. However, what makes this application unique is that it can be run on a web-page and is open to public. This program is open to further development as changes in a class are only effective within its class. Changes do not affect the general working protocol.

Summary:

Havacılığın büyümesi bir çok yeni probleme neden oldu. Bu problemlerden bir tanesi de GAP (Kapı Atama Problemi [Gate Assignment Problem]) dir. Uçak sayısındaki artı¸sın sebep oldu˘gu yoğunluk havalimanlarının verimli şekilde kullanılmasını zorunlu kılmaktadır. Uçakların park pozisyonları operasyonel maliyetleri etkilediği gibi transit yolcuların ve yolculara ait bagajların bir sonraki uçağa yetişebilmesini de etkilemektedir. GAP in amacı uçakları en uygun şekilde park ettirerek havalimanının verimli kullanılmasını sağlamaktır. Literatürde, ilk olarak toplam yürüme mesafesi hedef fonksiyon olarak, ardından toplam yürüme mesafesi ve bagajların bir sonraki uçuşa olan uzaklıkları hedef fonksiyon olarak kullanıldı. GAP, Babic ve diğerleri [2] tarafından 1980'lerde tam-sayılı program kullanılarak araştırılmaya başlandı ve bu konuda yapılan araştırmalar sürdü. İlerleyen yıllarda, deterministik model yerine istatistiksel modeller tercih edildi. Çeşitli simulasyon modelleri Yu Cheng tarafından problemin çözümü olarak önerildi [3]. Bolat [4] ise hedef fonksiyonunu transit yolcu ya da bagaj uzaklığı almayıp operasyonel maliyetleri hedef fonksiyonu seçmiştir. İlk defa 1998'de GA (Genetik Algoritma [Genetic Algorithm]) , GAP için kullanıldı [5]. Bu karma¸sık problemin hesaplanması GA ile kısaltılmıştır. 2001 yılında çoklu hedef fonksiyonu önerildi [6]. Bağlantı (Linkage) ve düzenli dağılım metodu GAP için Paolo [7] tarafından kullanıldı. Bu tezde, GAP, GA yöntemi kullanılarak çözüldü. Toplam transit yolcu yürüme mesafesi hedef fonksiyon olarak seçildi. Bu metod havacılık maliyetlerini dü¸sürmeyi ve mü¸steri memnuniyetini yükseltmeyi hedeflemektedir. Bu da gecikmeleri ve geciken uçak sayısını azaltmaktadır. GA uygulaması herhangi bir hazır program kullanmadan GAP için, web arayüzü kullanılarak "http://genetik1.netf13.com/home" üzerinde geliştirildi. Bu tezde özellikle aktarma merkezi olan havalimanları için operasyon maliyetlerini minimize edecek ¸sekilde uçak yerleştirme optimizasyonu yapıldı. GAP'in uçak yerleştirme süreci yeterince dikkatli takip edilmezse havalimanlarının programları etkilenebilmektedir. Benzer çalışmalar daha önce yapılmış olsa da bu çalışma uygulama web arayüzü ile etkile¸simli bir programdır. Bu çalışmada, GA'nın doğadan ilham aldığı vurgulanmaktadır. Bu tarz programlar doğanın doğal seçim kurallarından etkilenerek çalı¸sırlar. Genetik algoritma evrimsel bir algoritma olup uygun parametreler ile çalışmaktadır. Bu parametreler GAP'e uygun ve problemin veri hacmine göre seçilmiştir. Geliştirilmiş Permütasyon kodlama bu çalı¸sma için uygundur çünkü normal permütasyon kodlama boş değerlerin gösteriminde yetersiz kalmaktadır. OX (Düzenli parça değişimi [Ordered Crossing over]) ve PMX (kısmi eşleştirmeli parça değişimi PMX [Partially Mapped Crossing-over]) permütasyon kodlama için uygundur fakat OX tekniği boş değerler içeren permütasyon kodlama için daha iyidir. Bu çalışmada PHP programı algoritma için, HTML ise GUI (kullanıcı arayüzü [Graphic User Interface]) için ve MySQL4 ise veritabanı için kullanılmıştır. Bu programda GUI olduğundan kullanıcılar web sitesini ekileşimli şekilde kullanabilir. Kullacı istediği parametreleri kullanarak, en iyi 5 çözüme ulaşabilir, bu çözümleri analiz edebilir ve inceleyebilir. Tablo, '0data_set_gate' bir kare matris olup kapılar arasındaki uzaklı˘gı göstermektedir. 'data_set_plane' matrisi kare matris olup uçaklar arasındaki transit yolcu sayısını göstermektedir. Buna ek olarak "açık" tablo programın kolay kullanılması ve parametrelerin hafızada tutulması ve küme olarak kullanılabilmesi içindir. Son olarak, parametreler ve sonuçlar "stat" tablosunda tutulmaktadır. Program arka planda veritabanı ile haberleşmekte, algoritmayı çalıştırmaya başlamadan parametreleri kontrol etmekte ve son olarak PHP ile çalıştırılmaktadır. PHP kodları Burak Durukan tarafından, algoritma tasarımı ise Burak Güler tarafından yapılmıştır. Program testlerinde, en son adım metodu sonuç bulmak için kullanıldı˘gında sonuçlar büyük bir rassallık göstermektedir. Algoritma çok net sonuçlar vermemektedir. Algoritma'nın yapay zeka gibi çalı¸sıyor olması için durgun adım (stagnant step) parametresi kullamalıdır. Durgun adım parametresi kullanıldığında algoritma, çok büyük adımlara gelmeden de sonuç bulabilmektedir. Durgun adımlar parametresi ile en iyi sonuçları erken adımlarda bulabiliyoruz. Bu çalışma durgun adım parametresinin, final adım sayısının 1/5 ile 1/9 arasında olduğunu gösterdi. Diğer sonuç süresini etkileyen, kullanılabilir parametre ise mutasyon oranıdır. En iyi mutasyon oranı ise 0,06 ile 0,11 arasındadır. Daha yüksek mutasyon oranı sonuca olumsuz yansır ve çözüm süresini uzatır. Sonucun iyileşmesini sağlayan bir diğer parametre ise elitizmdir. Sonuç olarak benzer çalışmalar yapılmış olsa da bu çalışma halka açık ve web sitesi üzerinde yürütülebilmektedir. Bu program kolayca geliştirilebilirdir çünkü bir sınıfta yapılan değişik sadece ilgili kısmı etkilemekte, programın geri kalanını etkilememektedir.