Tez Arşivi

Hakkımızda

Tez aramanızı kolaylaştıracak arama motoru. Yazar, danışman, başlık ve özete göre tezleri arayabilirsiniz.


Orta Doğu Teknik Üniversitesi / Uygulamalı Matematik Enstitüsü / Finansal Matematik Anabilim Dalı

Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes

Sıçrama süreçlerinin varlığında geriye doğru stokastik diferensiyel denklemler ve Feynman-Kac formülü

Teze Git (tez.yok.gov.tr)

Bu tezin tam metni bu sitede bulunmamaktadır. Teze erişmek için tıklayın. Eğer tez bulunamazsa, YÖK Tez Merkezi tarama bölümünde 346027 tez numarasıyla arayabilirsiniz.

Özet:

Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called ?Backward Stochastic Differential Equations in Finance? (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstly, the principal theorems of BSDEs driven by Brownian motion are proved. Later, an application to partial differential equations (PDEs) is presented i.e. generalization of Feynman-Kac formula. Moreover, the studies of Situ in 1997 and his book entitled with ?Theory of Stochastic Differential Equations with Jumps and Applications? provide us a framework to prove explicitly the main theorems of BSDEs in the presence of jumps. Afterward, Feynman-Kac formula for general Lévy processes is proven. Lastly, the results are concluded by some applications in financial mathematics.

Summary:

Geriye Doğru Stokastik Diferansiyel Denklemler (GSDDler) bitiş zamanındaki değeri verilen yeni bir stokastik diferansiyel denklem sınıfı olarak ortaya çıkmıştır. GSDDlerin son kırk yıldır bilinmelerine rağmen uygulama alanı gittikçe genişlemektedir. Bu teze temel oluşturan El Karoui, Peng ve Queneze ait Backward Stochastic Differential Equations in Finance (1997) isimli makale finansal matematikte son derece önemli bir yer tutmaktadır. Tezin işleniş şekli aşağıdaki aşamalardan oluşmaktadır: Öncelikle, Brown hareketi ile oluşturulan GSDDler için temel teoremler ispatlanmıştır. Daha sonra, kısmi diferansiyel denklemlere (KDDlere) uygulama olan Feynman-Kac formülü incelenmiştir. Ayrıca, sıçramaların varlığında GSDDlerin ana teoremlerini açık şekilde ispatlamamız için Situnun 1997 yılındaki çalışmaları ve Theory of Stochastic Differential Equations with Jumps and Applications başlıklı kitabı bize yol göstermiştir. Sonrasında, genel Lévy süreçleri için Feynman-Kac formülü ispatlanmıştır. Son olarak, finansal matematikte bazı uygulamalar yapılmıştır.