Tez Arşivi

Hakkımızda

Tez aramanızı kolaylaştıracak arama motoru. Yazar, danışman, başlık ve özete göre tezleri arayabilirsiniz.


Orta Doğu Teknik Üniversitesi / Fen Bilimleri Enstitüsü / Elektrik-Elektronik Mühendisliği Anabilim Dalı

Parametric spectral estimation methods of clutter profile for adaptive radar detection and classification

Adaptif radar tespiti ve sınıflandırması için kargaşa spektrumu parametre kestirim metotları

Teze Git (tez.yok.gov.tr)

Bu tezin tam metni bu sitede bulunmamaktadır. Teze erişmek için tıklayın. Eğer tez bulunamazsa, YÖK Tez Merkezi tarama bölümünde 562739 tez numarasıyla arayabilirsiniz.

Özet:

Identification of unwanted echoes in a received radar signal is crucial in order to improve the radar detection performance. In the scope of thesis, currently proposed parametric spectrum estimation techniques, such as MUSIC, ESPRIT and Burg, are evaluated in order to estimate moments of clutter components in received radar echo. Since none of these methods has the ability of estimating Doppler spread and adequate accuracy, Stochastic Maximum Likelihood (SML) method is implemented, working with the best performing optimization and line search method. Since SML estimation accuracy is highly initial point dependent and computationally expensive, a novel estimation technique (Turbo) is proposed which works recursively. Proposed Turbo method outperformed the methods suggested in literature with its high Doppler resolution, accuracy and low computational cost. Moreover, Turbo performance is optimized by utilizing Burg estimates for initial point selection. After designing nearly optimal estimator, estimated parameters is used to design the detection filter which maximizes the Normalized SINR at its output even with a small number of secondary data. Finally, for clutter classification, a problem specific Neural Network architecture is designed. The proposed Neural Network performance is also evaluated with estimates of novel Turbo method.

Summary:

Radar tespit performansını iyileştirmek için, radar sinyali içindeki istenmeyen sinyallerin teşhisi kritiktir. Bu tez kapsamında, kargaşa yankılarının spektral moment tahmini için MUSIC, ESPRIT ve Burg gibi parametrik spektrum tahmin teknikleri değerlendirilmiştir. İncelenen tekniklerin hiçbiri Doppler yayılımını tahmin edemediği ve yeterli tahmin doğruluğuna sahip olmadığı için, en iyi performansa sahip optimizasyon ve çizgi arama algoritması ile çalışan Stokastik Maksimum İhtimal (SML) metodu uygulanmıştır. SML tahmin doğruluğu başlangıç noktasına çok bağlı olduğu ve hesaplama olarak pahalı olduğu için, yinelemeli çalışan özgün bir tahmin metodu (Turbo) önerilmiştir. Önerilen Turbo metodu yüksek Doppler çözünürlüğü, doğruluk de˘geri ve hesaplama kolaylığı ile literatürde önerilen metotlardan çok daha iyi performans göstermiştir. Buna ek olarak, Burg tahminleri başlangıç noktası seçiminde kullanılarak, önerilen Turbo metodu en uygun hale getirilmiştir. En uyguna yakın tahmin metodu tasarımından sonra, tahmin edilen parametreler, az sayıda ikincil veri ile bile çıkışında sinyalin girişim ve gürültü toplamına oranının maksimum normalize değerini elde edebilen tespit filtresi tasarımında kullanılmıştır. Son olarak, kargaşa sınıflandırılması için problem özel olarak yapay sinir ağı mimarisi tasarlanmıştır. Önerilen sinir ağı performansı, özgün Turbo metodu tahminleri ile değerlendirilmiştir.